Articles

We show that by incorporating negative feedback stabilisation to allow on increasing the modulation depth of the saturable absorber in a diode-pumped mode-locked Nd:KGd(WO4)2 laser leads to significant pulse shortening.

Video-rate computational heterodyne holography

We present a versatile computational image rendering software of optically-acquired holograms. The reported software can process 4 Megapixel 8-bit raw frames from a sensor array acquired at a sustained rate of 80 Hz. Video-rate image rendering is achieved by streamline image processing with commodity computer graphics hardware. For time-averaged holograms acquired in off-axis optical configuration … Read more

Holographic imaging of surface acoustic waves

We report on an experimental demonstration of surface acoustic waves monitoring on a thin metal plate with heterodyne optical holography. Narrowband imaging of local optical pathlength modulation is achieved with a frequency-tunable time-averaged laser Doppler holographic imaging scheme on a sensor array, at video-rate. This method enables robust and quantitative mapping of out-of-plane vibrations of … Read more

Non-destructive testing of composite plates by holographic vibrometry

Wereport on a wide-field optical monitoring method for revealing local delaminations in sandwichtype composite plates at video-rate by holographic vibrometry. Non-contact measurements of low frequency flexural waves is performed with time-averaged heterodyne holography. It enables narrowband imaging of local out-of-plane nanometric vibration amplitudes under sinusoidal excitation, and reveals delamination defects, which cause local resonances of … Read more

Holographic laser Doppler imaging of microvascular blood

We report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time-averaging recording conditions, holography acts as a narrowband bandpass f ilter, which, combined with a frequency-shifted reference beam, permits frequency-selective imaging in the radiofrequency range. These Doppler images are acquired with an off-axis Mach–Zehnder interferometer. Microvascular hemodynamic components … Read more

Holographic laser Doppler imaging of pulsatile blood flow

“We report on wide-field imaging of pulsatile motion induced by blood flow using heterodyne holographic interferometry on the thumb of a healthy volunteer, in real-time. Optical Doppler images were measured with green laser light by a frequency-shifted Mach-Zehnder interferometer in off-axis configuration. The recorded optical signal was linked to local instantaneous out-of-plane motion of the … Read more

Singular value demodulation of phase-shifted holograms

“We report on phase-shifted holographic interferogram demodulation by singular value decomposition. Numerical processing of optically-acquired interferograms over several modulation periods was performed in two steps : 1- rendering of off-axis complex-valued holograms by Fresnel transformation of the interferograms; 2- eigenvalue spectrum assessment of the lag-covariance matrix of hologram pixels. Experimental results in low-light recording conditions … Read more

Coherent beam combining of seven fiber chirped-pulse amplifiers using an interferometric phase measurement

Coherent beam combining in tiled-aperture configuration is demonstrated on seven femtosecond fiber amplifiers using an interferometric phase measurement technique. The residual phase error between two fibers is as low as λ/55 RMS and a combination efficiency of 48% has been achieved. The combined pulses are compressed to 216 fs, delivering 71W average power at a … Read more

Laser frequency shift up to 5 GHz with a high-efficiency 12-pass 350-MHz acoustooptic modulator

“We demonstrate a novel laser frequency shift scheme using a 12-pass 350-MHz acousto-optic modulator (AOM). This AOM system shows better performance compared to ordinary acousto-optic modulation schemes. The frequency of the incident laser beam is shifted by 4.2 GHz with the total diffraction efficiency as high as 11%, and the maximum frequency shift is 5 … Read more

Fast optical recording of neuronal activity by three-dimensional custom-access serial holography

Optical recording of neuronal activity in three-dimensional (3D) brain circuits at cellular and millisecond resolution in vivo is essential for probing information flow in the brain. While random-access multiphoton microscopy permits fast optical access to neuronal targets in three dimensions, the method is challenged by motion artifacts when recording from behaving animals. Therefore, we developed … Read more